Школа строительства и ремонта

Самые лучшие советы по ремонту в квартире

Коэффициент теплопроводности асбеста. Теплопроводность строительных материалов

17.09.2021 в 12:46

Коэффициент теплопроводности асбеста. Теплопроводность строительных материалов

Одним из важнейших показателей строительных материалов, особенно в условиях российского климата, является их теплопроводность, которая в общем виде определяется как способность тела к теплообмену (то есть распределению тепла от более горячей среды к более холодной).

В данном случае более холодная среда – это улица, а горячая – внутреннее пространство (летом зачастую наоборот). Сравнительная характеристика приведена в таблице:

Коэффициент рассчитывается как количество тепла, которое пройдет через материал толщиной 1 метр за 1 час при разнице температур внутри и снаружи на 1 градус Цельсия. Соответственно, единицей измерения строительных материалов является Вт/ (м*оС) – 1 Ватт, разделенный на произведение метра и градуса.

Гудрон

Сравнение теплопроводности строительных материалов, а также их плотности и паропроницаемости представлено в таблице.

Жирным шрифтом выделены наиболее эффективные материалы, применяющиеся в строительстве домов.

Ниже представлена наглядная схема, из которой легко увидеть, какую толщину должна иметь стена из разных материалов, чтобы она удерживала одинаковое количество тепла.

Очевидно, что по этому показателю преимущество за искусственными материалами (например, пенополистиролом).

Примерно такую же картину можно увидеть, если составить диаграмму строительных материалов, которые наиболее часто применяются в работе.

При этом большое значение имеют условия окружающей среды. Ниже приведена таблица теплопроводности строительных материалов, которые эксплуатируются:

  • в обычных условиях (А);
  • в условиях повышенной влажности (Б);
  • в условиях засушливого климата.

Данные взяты на основе соответствующих строительных норм и правил (СНиП II-3-79), а также из открытых интернет-источников (веб-страницы производителей соответствующих материалов). Если данные по конкретным условиям эксплуатации отсутствуют, то поле в таблице не заполнено.

Чем больше показатель, тем больше тепла он пропускает при прочих равных условиях. Так, у некоторых видов пенополистирола этот показатель равен 0,031, а у пенополиуретана – 0,041. С другой стороны, у бетона коэффициент на порядок выше – 1,51, следовательно, он пропускает тепло значительно лучше, чем искусственные материалы.

Сравнительные потери тепла через разные поверхности дома можно увидеть на схеме (100% — общие потери).

Очевидно, что большая часть уходит именно из стен, поэтому отделка этой части помещения – наиболее важная задача, особенно в условиях северного климата.

Применение материалов с небольшой теплопроводностью в утеплении домов

В основном сегодня используются искусственные материалы – пенопласт, минеральная вата, пенополиуретан, пенополистирол и другие. Они очень эффективны, доступны по цене и достаточно легко монтируются, не требуя особых навыков работы.

  • при возведении стен (требуется меньшая их толщина, поскольку основную нагрузку по сбережению тепла берут на себя именно теплоизоляционные материалы);
  • при обслуживании дома (тратится меньше ресурсов на отопление).

Пенопласт

Это один из лидеров в своей категории, который широко используется в утеплении стен как снаружи, так и внутри. Коэффициент составляет примерно 0,052-0,055 Вт/(оС*м).

Как выбрать качественный утеплитель

При выборе конкретного образца важно обращать внимание на маркировке – именно она содержит все основные сведения, влияющие на свойства.

Например, ПСБ-С-15 означает следующее:

Минеральная вата

Еще один довольно распространенный утеплитель, который применяется как во внутренней, так и в наружной отделке помещений, – это минеральная вата.

Материал достаточно долговечный, недорогой и несложен в монтаже. Вместе с тем, в отличие от пенопласта, она хорошо впитывает влагу, поэтому при ее использовании необходимо применять и гидроизоляционные материалы, что удорожает монтажные работы.

Коэффициент теплопроводности дерева. Теплопроводность древесины.

Теплопроводность определяет способность древесины проводить тепло и характеризуется коэффициентом теплопроводности λ, который представляет собой количество тепла, проходящего в течение 1 ч через плоскую стенку площадью 1 ми толщиной 1 м при разности температур на противоположноных сторонах стенки 1° С. Размерность теплопроводности ккал/м ч х град) или, в системе СИ, вт/м. х град. Вследствие пористого строения древесины теплопроводность невысока. С увеличением плотности теплопроводность древесины возрастает. Так как теплопроводность воды при одинаковой температуре в 23 раза меньше теплопроводности воздуха, теплопроводность древесины в сильной мере зависит от влажности, увеличиваясь, с ее возрастанием. С увеличением температуры теплопроводность древесины возрастает, причем это увеличение в большей мере выражено у влажной древесины. Теплопроводность древесины вдоль волокон значительно больше, чем поперек волокон.

В плоскости поперек волокон теплопроводность также зависит от направления, причем соотношение между теплопроводностью в радиальном λи тангенциальном λнаправлениях у разных пород различное. На величину этого соотношения оказывают влияние объем сердцевинных лучей и содержание поздней древесины. У пород с многочисленными сердцевинными лучами (дуб) λr>λ; у хвойных пород с небольшим объемом сердцевинных лучей, но имеющих высокий процент поздней древесины (лиственница), λ. У лиственных пород с равномерным строением годичных слоев и сравнительно малочисленными короткими сердцевинными лучами, а также у остальных хвойных пород λr мало отличается от λ. Диаграмма (рис. 43) позволяет определить величину теплопроводности древесины сосны (р=360 кГ/м) в тангенциальном направлении при различной температуре и влажности. Данные, полученные по этой диаграмме, могут быть использованы после внесения соответствующих поправок для определения с достаточной для практических расчетов точностью теплопроводности древесины других пород при разных значениях плотности в трех главных направлениях теплового потока. Необходимое значение коэффициента теплопроводности можно установить по формуле:

где λ—номинальное значение коэффициента теплопроводности при заданной температуре и влажности (определяется по диаграмме рис. 43). К— коэффициент, учитывающий условную плотность древесины; К— коэффициент, учитывающий направление теплового потока. Значения коэффициентов, входящих в эту формулу, определены для древесины сосны, березы и дуба.

Рис. 43. Диаграмма для определения теплопроводности древесины в тангенциальном направлении (сосна, Р= 360 кг/м).

р

В табл. 20 приведены значения коэффициента, учитывающего условную плотность древесины. Коэффициент Кв тангенциальном направлении поперек волокон для всех пород принят равным 1,0, а в радиальном — 1,15; вдоль волокон для хвойных и рассеяннососудистых пород — 2,20, а для кольцесосудистых — 1,60.

Коэффициент теплопроводности асбеста. Теплопроводность строительных материалов

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

Теплопроводность.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем «абстрактный дом». В «абстрактном доме» стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Теплопроводность.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

Расчет длины нихромовой проволоки. Онлайн расчет нихромовой проволоки для нагревателя

Применение нихромовых проволок в качестве нагревательных элементов обусловлено сочетанием следующих характеристик этих сплавов:

- высоких показателей жаростойкости сплавов никеля с хромом;
- высоким удельным электрическим сопротивлением ;
- хорошей пластичностью;
- низким температурным коэффициентом электрического сопротивления.

Предложенный калькулятор может быть использован для подсчета и примерной оценки необходимой длины нихромовой проволоки наиболее распространенных в настоящее время марок Х20Н80, Х20Н80-Н и Х15Н60 для нагревателей.

Для расчета потребуются следующие данные: желаемая мощность нагревателя. питающее напряжение и стандартное значение диаметра используемой проволоки.

Вначале, исходя из заданных параметров определяется сила тока ( I=P/U ). Далее, производится расчет сопротивления всего нагревательного элемента ( R=U/I ).

Затем, используя данные удельного электрического сопротивления ( ρ ) упомянутых выше марок проволоки находим ее необходимую длину ( l=SR/ρ ), которая обеспечит сопротивление нагревателя R .

После проведения расчета рекомендуется убедиться в соответствии полученного расчетного тока его допустимому значению из приведенной ниже таблицы:

Коэффициент теплопроводности асбеста. Теплопроводность строительных материалов 03

Если полученный ток превышает допустимый, необходимо повторить расчет, выбрав большее значение диаметра нихромовой проволоки или снизив мощность нагревательного элемента .

Обязательно следует учесть, что допустимые значения тока в зависимости от выбранного диаметра проволоки и температуры нагрева, приведенные в таблице стоит рассматривать для нагревателей, закрепленных в горизонтальном состоянии в воздушной среде.

Так, в случае если спираль погружена в нагреваемую жидкость, то допустимый ток может быть увеличен в 1,1-1,5 раза, а закрытое расположение спирали в связи с гораздо худшим охлаждением наоборот, предполагает уменьшение допустимого тока в 1,2-1,5 раза.

Теплопроводность пеноплекса 50 мм в сравнении таблица. Производство пеноплекса и разновидности материала

Производство пеноплекса организовано по следующей технологии: мелкие гранулы полистирола в герметичной камере подвергаются воздействию высокой температуры (1300С-1400С), вследствие чего расплавляются, а после добавления порофоров вспениваются. Порофоры – это синтетические добавки, которые в процессе нагревания выделяют азот и углекислый газ, превращающиеся после остывания пеноплекса в застывшие воздушные пузырьки, равномерно распределенные по всему материалу.

Сравнение теплопроводности пеноплекса и других стройматериалов

Составляющие компоненты порофоров для производства экструдированного пенополистирола (пеноплекса):

Составляющие пеноплексаОбъем по массе
Полистирол100
Мелкодисперсный перлит1
Бикарбонат натрия Na2CO31
Кислота лимонная C6H8O70,8
Стеарат цинка (С36H70O4Zn / Zn(C18H35O2)2) или бария (C36H70BaO4)0,2
Тетрабромпараксилол – добавка для обеспечения самозатухающих качеств вспенивающемуся  полистиролу1,2

Производство пеноплекса

Застывшая пена может содержать некоторые синтетические наполнители, присутствие которых определяет направленность применения утеплителя – для стен, фундамента, и т.д. Самые распространенные добавки – антипирены для повышения пожаробезопасности (снижения степени возгораемости), антиоксиданты для предохранения материала от окисления на открытом воздухе, антистатические вещества для снятия статического и динамического напряжения в ходе эксплуатации утеплителя, световые стабилизаторы (предохранение от негативного влияния УФ излучения), модифицирующие добавки и др.

Полистирольная пена под давлением выдавливается из камеры-экструдера на транспортер для окончательного формирования в плиты или блоки. Процент газов в утеплителе достигает 98% от всего объема готового пеноплекса, поэтому изделия имеют небольшой вес при внушительных габаритах. Размеры для каждой функциональной линейки утеплителя приведены в таблицах ниже.

Размеры и виды пеноплекса

Маленький размер пор (0,1-0,3 мм) и полная изоляция их друг от друга гарантирует высокие теплоизоляционные показатели любых марок пеноплекса. Для разных строительных объектов необходимо подбирать соответствующие серии и марки утеплителя, так как сооружения могут эксплуатироваться в разных условиях:

  1. Марка «К» разработана для утепления скатной или плоской кровли и крыши. Удельный вес (плотность) серии «К» – 28-33 кг/м3;
  2. Серия «С» – утеплитель для внутренних и внешних стен с плотностью вещества 25-35 кг/м3;
  3. Маркой «Ф» утепляют фундаменты, цокольные и подвальные помещения. Материал с высокой влагонепроницаемостью, биологической устойчивостью и удельной массой ≥37 кг/м3;
  4. Пеноплекс марки «Комфорт» – универсальная серия утеплителя с плотностью 25-35 кг/м3. Направление применения – утепление квартир, домов, подвалов, балконов и лоджий;
  5. Марка «45» имеет самые высокие показатели морозостойкости и прочности, удельная масса 35-47 кг/м3. Предназначен для теплоизоляции дорожного полотна, ВПП, и других сильно нагружаемых объектов и конструкций.

Пенополистирольные сэндвич-панели

Отдельной категорией производятся сэндвич-панели, которые представляют собой усовершенствованный теплоизолятор для утепления чердаков и мансард, фасадов и фундаментов зданий. Сэндвич-панель имеет 2-3 слоя и цементно-стружечный лист в качестве нижней прослойки.

Коэффициент сопротивления теплопередаче. Сопротивление теплопередаче

Итак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.

Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.

Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.

R = h/λ

где:

R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;

h — толщина этого слоя, выраженная в метрах;

λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).

Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.

Формула сопротивления перегородки с n-слоев будет такой:

Rsum = R₁ + R₂ + …+Rn + Rai + Rao

где:

Rsum — суммарное термическое сопротивление ограждающей конструкции;

R₁ … Rn — сопротивления слоев, от 1 до n;

Rai — сопротивление пристенного слоя воздуха внутри;

Rao — сопротивление пристенного слоя воздуха снаружи.

Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.

Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.

Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче.